Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2257172

ABSTRACT

Waning immunity and emerging variants necessitate continued vaccination against SARS-CoV-2. Improvements in vaccine safety, tolerability, and ease of manufacturing would benefit these efforts. Here, we develop a potent and easily manufactured nanoparticle vaccine displaying the spike receptor-binding domain (RBD). Computational design to stabilize the RBD, eliminate glycosylation, and focus the immune response to neutralizing epitopes results in an RBD immunogen that resolves issues hindering the efficient nanoparticle display of the native RBD. This non-glycosylated RBD can be genetically fused to diverse single-component nanoparticle platforms maximizing manufacturing ease and flexibility. All engineered RBD-nanoparticles elicit potently neutralizing antibodies in mice that far exceed monomeric RBD. A 60-copy particle (noNAG-RBD-E2p) also elicits potently neutralizing antibodies in non-human primates. The neutralizing antibody titers elicited by noNAG-RBD-E2p are comparable to a benchmark stabilized spike antigen and reach levels against omicron BA.5 that suggest it would provide protection against emerging variants. Graphical SARS-CoV-2 RBD vaccines are cost-effective but require methods to increase their potency. Dickey et al. use a computational design method to create a stabilized non-glycosylated RBD that it can be fused to a nanoparticle carrier, boosting its potency to levels of a gold-standard spike antigen.

2.
Cell Rep ; 42(3): 112266, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2257173

ABSTRACT

Waning immunity and emerging variants necessitate continued vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Improvements in vaccine safety, tolerability, and ease of manufacturing would benefit these efforts. Here, we develop a potent and easily manufactured nanoparticle vaccine displaying the spike receptor-binding domain (RBD). Computational design to stabilize the RBD, eliminate glycosylation, and focus the immune response to neutralizing epitopes results in an RBD immunogen that resolves issues hindering the efficient nanoparticle display of the native RBD. This non-glycosylated RBD can be genetically fused to diverse single-component nanoparticle platforms, maximizing manufacturing ease and flexibility. All engineered RBD nanoparticles elicit potently neutralizing antibodies in mice that far exceed monomeric RBDs. A 60-copy particle (noNAG-RBD-E2p) also elicits potently neutralizing antibodies in non-human primates. The neutralizing antibody titers elicited by noNAG-RBD-E2p are comparable to a benchmark stabilized spike antigen and reach levels against Omicron BA.5 that suggest that it would provide protection against emerging variants.


Subject(s)
COVID-19 , Nanoparticles , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Nanoparticles/chemistry
3.
Sci Adv ; 8(37): eabq8276, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2029458

ABSTRACT

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is the primary target of neutralizing antibodies and is a component of almost all current vaccines. Here, RBD immunogens were created with stabilizing amino acid changes that improve the neutralizing antibody response, as well as characteristics for production, storage, and distribution. A computational design and in vitro screening platform identified three improved immunogens, each with approximately nine amino acid changes relative to the native RBD sequence, and four key changes conserved between immunogens. The changes are adaptable to all vaccine platforms and compatible with mutations in emerging variants of concern. The immunogens elicit higher levels of neutralizing antibodies than native RBD, focus the immune response to structured neutralizing epitopes, and have increased production yields and thermostability. Incorporating these variant-independent amino acid changes in next-generation COVID vaccines may enhance the neutralizing antibody response and lead to longer duration and broader protection.


Subject(s)
COVID-19 , Viral Vaccines , Amino Acids , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
iScience ; 25(8): 104739, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1926567

ABSTRACT

Several effective SARS-CoV-2 vaccines have been developed using different technologies. Although these vaccines target the isolates collected early in the pandemic, many have protected against serious illness from newer variants. Nevertheless, efficacy has diminished against successive variants and the need for effective and affordable vaccines persists especially in the developing world. Here, we adapted our protein-protein conjugate vaccine technology to generate a vaccine based on receptor-binding domain (RBD) antigen. RBD was conjugated to a carrier protein, EcoCRM®, to generate two types of conjugates: crosslinked and radial conjugates. In the crosslinked conjugate, antigen and carrier are chemically crosslinked; in the radial conjugate, the antigen is conjugated to the carrier by site-specific conjugation. With AS01 adjuvant, both conjugates showed enhanced immunogenicity in mice compared to RBD, with a Th1 bias. In hACE2 binding inhibition and pseudovirus neutralization assays, sera from mice vaccinated with the radial conjugate demonstrated strong functional activity.

SELECTION OF CITATIONS
SEARCH DETAIL